Garden Placement Using Publicly Available LiDAR

Here’s a quick method for finding the sunniest spot on your property in Prince George, BC (and elsewhere if you can find the data). Unfortunately, this method is not free from start to finish (it requires ArcGIS Spatial Analyst), but there are a fair number of free tools and data used.

  1. Get the data. Specifically, you need the raw LiDAR (.las file) for your area, which are not available for download from the City of PG’s Open Data Catalogue. While you’re at it, also ask for the orthophotos (aerial photos) and cadastral data (parcel boundaries, road files, etc.). Get in touch with the City of Prince George’s GIS department to make your data request: gisinfo@city.pg.bc.ca
  2. Load your orthophoto into your GIS program (I’m using ArcGIS, but you can use QGIS for the time being [it’s free]).
  3. Create a new polygon feature class and draw a polygon to narrow down your area of interest.Image
  4. Download LAStools (it’s free for the tools you need). Bring the LAStools toolbox into your GIS (there are ArcGIS and QGIS versions).
  5. Run the lasclip tool to ignore the millions of LiDAR points that you’re not interested in.
  6. Run las2dem to create an elevation raster of your LiDAR data.Image
  7. Consult your favourite source, like the Farmer’s Almanac, to determine the timing for your growing season, .
  8. Here is where I used a Spatial Analyst tool called Area Solar Radiation, which is not free (in fact, it’s darn expensive). Run the tool, using your latitude (PG is about 53.914), and frost free start and end dates (for PG, June 4 to Sept. 3). You should end up with something like this, which my legend tells me ranges from blue (353 watt hours per square metre) to red (883061 WH/m^2): Image
  9. Now, it’s a matter of overlaying parcel boundaries, finding your property, and seeing what kind of sunlight you can expect. I’ve circled a few good candidates on this block with lots of sun in the backyard, and (surprise!) some of them are existing gardens.ImageImage

Bonus: another cool thing you can do (for free) is load your monochrome elevation model in Blender, extrude the terrain heights, drape the aerial imagery overtop, and create a 3D animation like this one.

Advertisements

2 thoughts on “Garden Placement Using Publicly Available LiDAR

  1. Pingback: Solar Radiation: free method | Darren's Side Projects

  2. Doug Newcomb

    Darren,
    You can save yourself a bit of money in step 8 by using the GRASS r.sun command, http://grass.osgeo.org/grass65/manuals/r.sun.html , http://grasswiki.osgeo.org/wiki/R.sun
    r.sun requires julian day inputs. Run a daily summation for each julian day in the growing season with a python script , then sum the days using r.series, http://grass.osgeo.org/grass64/manuals/r.series.html

    For a relatively small area such as your example, you should be able to run r.sun as a single partition without a horizon layer without consuming a large amount of memory.

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s